Training objectives	Expected learning outcomes of	Corresponding module
	the curriculum	
Possess the ability to	Knowledge: Mastery of	Innovation
apply knowledge of	fundamental knowledge in	Entrepreneurship
mathematics, natural	mathematics, natural sciences,	College Students
sciences, engineering,	information technology, and	Computer
and economic	computer-related fields.	Computer Language
management to	Skills: The ability to apply	Higher Mathematics A
conduct	mathematical knowledge to	Linear Algebra
comprehensive	understand and appropriately	Probability Theory and
analysis and research	express engineering practical	Mathematical Statistics
on complex chemical	problems, and to establish basic	University Physics
engineering problems	models to solve various practical	Electrical and Electronic
in the field of	problems in technology and	Technology
chemical engineering	engineering applications.	Inorganic Chemistry A
and propose	Competences: The ability to	Inorganic Chemistry
solutions.	observe, analyze, and solve	Experiment A
	technical problems using the	Organic Chemistry
	perspectives and thinking	Organic Chemistry
	methods of mathematics and	Experiment A
	information technology. Based on	Analytical Chemistry
	the characteristics of mathematics	Analytical Chemistry
	and information technology, one	Experiment
	can conduct continuous analysis,	Physical Chemistry A
	synthesis, calculation, judgment,	Physical Chemistry
	and reasoning on engineering	Experiment B
	phenomena, thereby solving	Instrument Analysis
	engineering problems	Instrument Analysis
		Experiment

Biochemistry
Biochemical Experiment
Chemical Principle
Chemical Principle
Experiment
Chemical Principle
Simulation Experiment
Chemical Reaction
Engineering
Chemical Engineering
Professional Experiment
Chemical Engineering
Thermodynamics
Chemical Separation
Engineering
Chemical Process
Engineering
Chemical Engineering
Drawing
Chemical Design A
Chemical Safety and
Environmental Protection
Introduction to Chemical
Engineering
Chemical Process
Analysis and Synthesis
Fundamentals of
Chemical Equipment
Mechanics

		Chemical Instruments and
		Automation
		Chemical Production
		Internship
		Chemical Engineering
		Principles Course Design
		Chemical Design B
		Comprehensive Training
		for Chemical Engineering
		Graduates
With a solid	Knowledge: Master the knowledge	Ideological and Moral
grounding in the	of modern Chinese history, the basic	Education and Rule of
humanities and social	principles of Marxism, patriotism,	Law
sciences, as well as	humanistic spirit, physical	Outline of Modern and
professional ethics in	education, and military training.	Contemporary Chinese
engineering and a	Skills: Understand social	History
sense of social	phenomena, pay attention to and	Basic Principles of
responsibility, one	adapt to social development,	Marxism
should be able to	possess the ability to communicate	Mao Zedong Thought and
comprehensively	and collaborate with others, exhibit	the Theoretical System of
consider social,	team spirit, and promote physical	Socialism with Chinese
safety, and	and mental health and	Characteristics
environmental	self-improvement.	Current Situations and
protection factors in	Competences: Develop a sound	Policies
the design and	personality and good psychological	Career Development and
implementation of	qualities, hold a correct worldview,	Employment Guidance for
chemical engineering	values, moral views, and legal	College Students
projects, and actively	perspectives, and possess cultural	Chemical Engineering
practice the core	literacy and a sense of social	Design A

socialist values.	responsibility.	Chemical Safety and
		Environmental Protection
		Metalworking Practice A
		Electrical and Electronics
		Practice A
		Chemical Engineering
		Recognition Internship
		Chemical Production
		Internship
To possess the	Knowledge: Master professional	Foundations of Innovation
innovative capability	knowledge in chemical engineering	and Entrepreneurship
to analyze and	and technology, particularly in the	Basic Computer Science for
optimize chemical	design of processes related to	College Students
processes, and to	chemical reactions and separation	Computer Languages
solve complex	processes.	College Physics Laboratory
engineering problems,	Skills: Possess specialized	Inorganic Chemistry
is essential for	knowledge to analyze and solve	Laboratory A
engaging in	practical problems in chemical	Organic Chemistry
engineering practice	engineering and technology, design	Laboratory A
related to chemical	chemical reaction processes that	Analytical Chemistry
engineering design,	meet specific needs, and provide	Laboratory
production	solutions for complex chemical	Physical Chemistry
operations,	reaction engineering problems,	Laboratory B
technology	including prediction and simulation	Biochemistry Laboratory
development, and	of complex chemical engineering	Instrumental Analysis
management, as well	and technology issues.	Instrumental Analysis
as participating in	Competences: Master	Laboratory
related business	comprehensive knowledge in	Chemical Engineering
activities. This	system design, diagnosis, energy	Principles Laboratory A

involves considering	saving and optimization, operation,	Chemical Engineering
and evaluating the	and management in chemical	Principles Simulation
impact on the	engineering and technology. Able to	Laboratory
environment and	analyze and evaluate practical	Chemical Reaction
social sustainability,	problems using engineering	Engineering
with the aim of	background knowledge, understand	Professional Chemical
becoming a key	its limitations, demonstrate	Engineering Laboratory
player in production	innovative awareness in the design	Chemical Engineering
management,	phase, and provide valuable	Design A
technology research	solutions.	Chemical Process Analysis
and development,		and Synthesis
process design		Chemical Technology
management, and		Economics
analysis and testing		Chemical Engineering
within the field of		Principles Course Design
chemical		Chemical Engineering
engineering		Design B
		Comprehensive Training in
		Chemical Engineering
		Graduation
To possess good	Knowledge: Master a foreign	Military Theory for College
personal and team	language and pass the National	Students
collaboration skills,	College English Test Band 4,	College Physical Education
and to be able to	acquiring core knowledge in	and Health
communicate and	English.	College English
interact effectively	Skills: Read professional literature	Professional English and
with peers in the	in English and communicate and	Literature Retrieval B
chemical industry,	discuss professional issues with	Practical Writing
related sectors, or the	others in the language.	Orientation Education and

general public.	Competences: Possess	Military Training
	comprehensive expertise in the	Comprehensive Training in
	English specialty, enabling work in	Chemical Engineering
	relevant national fields and the	Graduation
	ability to conduct cross-cultural	
	communication.	
To cultivate an	Knowledge: Master specialized	Current Situations and
international	knowledge in cutting-edge fields	Policies
perspective,	related to design.	Mental Health for College
continuously expand	Skills: Broaden professional	Students
one's knowledge	knowledge, stay abreast of trends in	Career Development and
structure, enhance	professional and related fields, and	Employment Guidance for
professional skills in	develop the capacity for knowledge	College Students
chemical engineering,	accumulation and in-depth study.	Chemical Production
and improve overall	Competences: Cultivate	Internship
quality, while	comprehensive qualities in	Comprehensive Training in
possessing the ability	interdisciplinary fields related to	Chemical Engineering
for lifelong learning.	this course, and be capable of	Graduation
	applying learned professional	
	knowledge in a broad range of	
	applications.	